960 research outputs found

    Quartet excitations and cluster spectra in light nuclei

    Get PDF
    The relation of quarteting and clustering in atomic nuclei is discussed based on symmetry-considerations. This connection enables us to predict a complete high-energy cluster spectrum from the description of the low-energy quartet part. As an example the 28^{28}Si nucleus is considered, including its well-established ground-state region, the recently proposed superdeformed band, and the high-lying molecular resonances

    Shape isomers and clusterization in the 28Si nucleus

    Get PDF

    Synthesis and photochromic properties of a bis(diarylethene)-naphthopyran hybrid

    Get PDF
    The synthesis and photochromic properties of a triphotochromic molecule consisting of one naphthopyran flanked by two diarylethene units investigated by UV-Visible and NMR spectroscopies are reported. Six different states resulting from the open/closed naphthopyran associated with one or two open/cyclized diarylethenes have been characterized. Switching of the naphthopyran group is possible, independently of the state of the diarylethene groups, permitting the controlled generation of electronically connected diarylethene groups. However, the diarylethene groups cannot be closed if the naphthopyran group is open

    Body-centred cubic packing of spheres-the ultimate thermotropic assembly mode for highly divergent dendrons

    Get PDF
    We have synthesized sodium tris(alkoxy)benzoates in which one of the three alkyl chains branches further into three C 18 H 37 chains. These AB5 hyperbranched minidendrons melt directly into a body-centred cubic (BCC) mesophase formed by spherical "micelles". In contrast, their non-branched counterparts display various mesophases before they turn into BCC upon heating. This agrees with the predictions from a numerical geometric model that relates the shape of the molecular wedge to the type of mesophase they adopt. The spheres were found to shrink in volume upon heating and expand upon cooling, as molecules, in some cases nearly half of them, are ejected and reintegrated in the spheres. The ejection of dendrons is caused by their lateral thermal expansion. The BCC appears to be the ultimate mesophase for the extremely divergent wedges such as the hyperbranched minidendrons. In dendrons with chains of unequal length, the sphere size is fixed by the shorter chains, the longer ones back-folding or interdigitating to effectively widen the wedge. This new understanding of their assembly will help in designing new dendrons, e.g. for better encapsulation of guest molecules

    Added Alkane Allows Thermal Thinning of Supramolecular Columns by Forming Superlattice-An X-ray and Neutron Study.

    Get PDF
    We report a columnar superlattice formed by blends of dendron-like Li 3,4,5-tris(n-alkoxy)benzoates with n-alkanes. Without the alkane, the wedge-shaped molecules form liquid crystal columns with 3 dendrons in a supramolecular disk. The same structure exists in the blend, but on heating one dendron is expelled from the disks in every third column and is replaced by the alkane. This superlattice of unequal columns is confirmed by complementary X-ray and neutron diffraction studies. Lateral thermal expansion of dendrons normally leads to the expulsion of excess molecules from the column, reducing the column diameter. However, in the already narrow columns of pure Li salt, expulsion of one of only three dendrons in a disk is not viable. The added alkane facilitates the expulsion, as it replaces the missing dendron. Replacing the alkane with a functional compound can potentially lead to active nanoarrays with relatively large periodicity by using only small molecules
    • …
    corecore